电子束焊接的基本原理是电子枪中的阴极由于直接或间接加热而发射电子,该电子在高压静电场的加速下再通过电磁场的聚焦就可以形成能量密度的电子束,用此电子束去轰击工件,的动能转化为热能,使焊接处工件熔化,形成熔池,从而实现对工件的焊接。
由于焊缝及其热影响区发生了复杂的物理化学变化,其组织成分和性能已不同于母材,所以焊接后一般要通过热处理来改善焊缝和热影响区的组织,消除残余应力,促使残余的氢逸出,从而提高焊接接头的韧性,增强零件抵抗应力腐蚀的能力,零件形状和尺寸的长期稳定。
近年来,焊接研究所提出了新型非真空电子束焊接方法,即电子束-等离子弧焊接。它采用电子束与等离子弧相串联,叠加起来进行焊接,电子束通过真空和等离子枪的阴极进入大气,穿过等离子弧后熔化金属进行焊接。这样可以减小电子束的能量损失,也有助于稳定等离子弧,等离子弧可以很好的保护焊接熔池,并作为附加热源预热工件,有助于改善焊缝成形,增加熔深。
与传统电子束焊相比,活性电子束焊的特点为:
①使用活性剂可明显减小熔池上部宽度,改变熔池形状。
②SiO2、TiO2、Cr2O3单组元活性剂对电子束焊接熔深增加有影响。
③由SiO2、TiO2、Cr2O3等组成的多组元不锈钢电子束焊活性剂,可使聚焦电子束焊接熔深增加两倍多。
④使用活性剂后,聚焦电流和束流对电子束焊熔深增加有影响。
电子束能量可以调节,被焊金属厚度可以从薄至0.05mm到厚至300mm,不开坡口,一次焊接成形,这是其他焊接方法无法达到的。能采用电子束焊接的材料范围较大,特别适用于活性金属、难熔金属和质量要求高的工件的焊接。
在大气的环境下,高速运动的电子遇到大气中的空气分子,会发生强烈的反射,折射,散射等现象,这样电子束的能量会消耗殆尽,等到达要焊接的工件,几乎不能穿透厚一点的金属;即使所剩的能量很高,在大气状态下焊接,焊接的质量也很难,比如气孔等;基于安全角度进行考虑,因为电子束焊接过程中会有X射线产生,对人体的危害是比较大的,有真空室就可以通过真空室来消除这个影响。